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The theoretical calculations for device performance are shown in detail in sections 1-6.  In 
section 7 the experimental work done by the actuator is plotted as a function of applied force.  In 
section 8 we present simulations of multi-cell deformations. 
 
1 Variables 

Table I.  Variable values. 
 Symbol Values Units SI Value SI Units 
Device Dimensions      
      
membrane-covered reservoirs      
reservoir length lr 5.0 mm 5.00E-03 m 
reservoir  width wr 2.5 mm 2.50E-03 m 
PDMS membrane thickness h 25 μm 2.50E-05 m 
round membrane equivalent radius r 1.995 mm 1.995E-03 m 
      
channels      
number of channels n 9  9  
channel depth dc 25 μm 6.00E-05 m 
channel width wc 150 μm 1.50E-04 m 
channel length lc 1 cm 1.00E-02 m 
      
electrodes      
distance between electrodes L 3 cm 3.00E-02 m 
      
Actuation      
      
applied voltage V 3.5 kV 3,500 V 
time required to inflate membrane ti 5 sec 5 sec 
membrane deflection h 120 μm 1.20E-04 m 
time required to deflate membrane td 2 sec 2 sec 
      



Material Constants/Properties      
      
dielectric constant of fluid ε 78  78  
zeta potential ζ 0. 05 V 2.00E-02 V 
viscosity of the liquid η 0.001 N·s/m2 1.00E-03 Pa·s 
membrane Young's modulus EY 0.5 MPa 5.00E+05 Pa 
membrane Poisson's ratio ν 0.4  4.00E-01  
      
Constants      
permittivity ε0 8.9E-12 C2/Nm2 8.9E-12 C/Vm 
gravitational constant g   9.8 m/s2 
 
 
2 Flow Rate Due to EOF 

2.1 Experimental EOF Flow Rate 

To calculate the experimental flow rate, the volume of fluid in the membrane above the reservoir 
is divided by the time required to inflate the membrane.  The volume V can be approximated as 
half the volume of a scalene ellipsoid 
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where a is half the length of the major axis (lr/2), b is half the length of the minor axis (wr/2), and 
c is the deflected height of the membrane.  To obtain the flow rate over most of the inflation 
period, take the values to reach 80% of the final height of 120 μm (Figure 3D in the main text.)  
Using the values in Table I, for a deflection of  120 μm * 0.80 = 96 μm,  

(2) V = 0.63 μL.   

It takes 5 seconds to reach that height under an applied voltage of 3.5 kV, giving a flow rate of  

(3) QEO = dV/dt = 0.126 μL/sec. 

 
To check this answer, one can also approximate the volume as the section of a hemisphere above 
the surface of the reservoir.  The radius R of the circle, of which the expanded region is an arc, 
changes as the membrane inflates.  It is related to the inflated height h and the diameter L as 
follows. 
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To calculate the volume of the expanded area, integrate the area over the distance above the 
surface. 
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Setting y = R – h and doing the algebra, we obtain 
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Using an equivalent diameter of 

(7) r = ab / π  

and again using h = 96 μm gives V = 0.60 μL.  This is nearly the same as the volume as found 
above. 
 
2.2 Theoretical EOF Flow Rate 

The flow due to EOF is found by defining an electroosmotic mobility μEO [1] 

(8) μEO = 0εε ζ
η

 

where ε is the dielectric constant, ε0 is the permittivity, ζ is the zeta potential, and η is the fluid 
viscosity.  The zeta potential depends on the chemistry of the fluid/channel wall system.  
Applying an electric field E  produces an electroosmotic velocity vEO 

(9) vEO = μEO | E | 

To obtain the flow rate, the velocity is multiplied by the cross sectional area A available for flow, 
which is the number of channels n times their width wc and depth dc. 
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Using an estimate of ζ = 0.05 V, for an applied voltage of 3.5 kV we obtain 

(11) QEO = 0.14 μL/sec. 

This is the same as the experimental value.   
 
 
3 Flow Rate Due to Pressure 

3.1 Experimental Pressure-Driven Flow Rate 

When EOF is turned off, the elastic restoring forces of the membrane push the fluid back down.  
The time required to empty the reservoir, from a deflection of 120 μm (see Figure 3D), is two 
seconds.  Calculating the fluid volume in the same manner as above gives V = 0.785 μL.  This 
results in a relaxation flow rate QP of  
 

(12) QP = V/t = 0.393 μL/sec. 

 
3.2 Theoretical Pressure-Driven Flow 

3.2.1 Pressure Applied by the Membrane  

The relationship between the flow rate QP and pressure difference ΔP for n rectangular channels 
due to a pressure gradient across the channels is [2] 
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where lc is the length of the channel.  Using the experimental relaxation flow rate, we can find 
the pressure on the membrane.  Rearranging, 
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Using 0.393 μL/sec and the values in Table I, we find a relaxation pressure of 

(15) ΔP = 2500 Pa. 

 
3.2.2 Pressure Due to EOF  

By equating the flow rates due to EO, equation (10), and the membrane, equation (12), we can 
obtain the pressure due to EO flow, ΔPEO.  
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Note that this does not depend on the number of channels.  Using the values in Table I we obtain 

(17) ΔPEO = 870 Pa. 

 
Since it took over 5 seconds to fill and 2 seconds to empty the fluid above the reservoir, we 
would have expected a pressure of less than approximately 2500 * 2 / 5 = 1000 Pa, which is 
consistent with the calculated value.   
 
 
4 Membrane Deflection Due to EOF 

The deflection y of the center of a rectangular membrane due to a pressure P is [3] 
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where D is the flexural rigidity, 

(19) D = 3 212 1Et / ( )ν⎡ ⎤−⎣ ⎦ , 

E is the Young’s modulus, and ν is the Poisson ratio.  A pressure of 870 Pa is expected to 
produce a deflection of 

(20) y = 239 μm. 

This is very close to the deflection of 280 μm observed experimentally at 3.5 kV.  
 
The deflection is plotted below as a function of pressure using the relationship in equation (18).  
 

 
 
The contribution of each of the three terms in the equation to the total pressure is shown in the 
following figure.  The 2nd and 3rd terms dominate, with the 3rd term being twice as large as the 
second. 
 



 
 
 
5 Force Due to EOF 

The area of the membrane is A = wr * lr = 12.5 mm2.  The pressure is a force per unit area, so 
multiplying the pressure by the area should yield the force that can be exerted by the membrane.  
Experimentally, the blocking force for 3.5 kV was on the order of 1 gram.  Using the area of the 
entire membrane and a pressure of 870 Pa, theoretically we would expect 

(21) F = A ∗ ΔPEO = 1.25 * 10-5 m2 * 870 N/m2 = 1.1*10-2 N. 
This corresponds to weight of 

(22) 1.1*10-2 N / 9.8 m/sec2 = 1.1 g   

This is close to the experimentally estimated blocked force of 1.2 g at 3.5 kV. 
 
 
6 Calculating Tensile Strain 

Returning to the figure in section 2.1 above, and using L = 2.5 mm, which is the length of the 
shortest side of the reservoir, we can obtain the length of the arc (the red line) by 

(23) sinθ = (L/2)/R 

and 

(24) arclength = 2πR * 2θ /360 

The strain is found from ΔL/L where ΔL = arclength – L.  For h = 240 μm, R = 3.4 mm, θ = 
21.7°, and the arclength = 2.56 mm, giving ΔL = 0.06 mm and a strain of 2.4%.  Beyond h = 
1.25, for which strain = 57%, the shape is no longer an arc of a circle. 
 
 



7 Work 

The work performed by the actuator at different applied voltages is shown here. 
 

 
 
8 Simulations of Multi-Cell Deformations 

Simulations of multi-cell material deformations, as shown in Figure 4A, B in the main text, were 
carried out as follows.  For a single cell, the material was treated as linearly elastic.  Equation (3) 
in the main text gave the pressure difference between the supply and expansion chambers.  This 
pressure was applied as a boundary condition to the internal reservoir boundaries, as shown 
below.  The resulting material deformation was assumed to be governed by standard elasticity 
equations and was computed using the multi-physics COMSOL software (www.comsol.com).  
COMSOL uses a finite element method and has a moving mesh capability that can keep track of 
large material deformations.  A Lagrangian method was used wherein the mesh followed the 
motion of the material. 
 
The figure below shows the model setup in two spatial dimensions for a single cell.  The 
boundary conditions are shown in panel a):  EO actuation creates a pressure difference in the 
reservoirs (pressure in on the left, pressure out on the right), the position of the channel is fixed 
(to prevent rigid body translations/rotations), and the free edges of the material have zero stress.   
Panel b) shows the mesh deforming with the material elements.  Panel c) shows the resulting 
material deformation, colored by the von Mises stresses. 
 
 



a) b)

c)

 
Simulations for a collection of cells, and for 3-dimensions, were done the same way, with the 
same boundary conditions repeated throughout.  In the multi-cell simulations, two edge points 
were constrained to remain fixed in the y direction, and a center material point was constrained 
to remain fixed in the x direction; this allowed arbitrary deformation of the material but 
prevented rigid body translations and rotations. 
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